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Abstract
This paper is concerned with effective potentials W1(R) between interacting
supramolecular particles separated by a distance R. We focus on the question
of why these potentials are typically ‘soft’, i.e., remain finite for R → 0 and
vary more weakly with R than the underlying interatomic interaction potentials.
On the basis of a general expression linking W1(R) to the free energy F of the
supramolecular system we investigate the origin of the apparent ‘softness’ of
W1(R) by considering a number of special model systems, starting with an
atom and a diatomic molecule. This simple model already yields a W1(R)

that is finite at R = 0, but W1(R) does not exhibit the slowly varying character
typical of effective potentials for realistic systems. We then show that the larger
length scale is recovered when one introduces both many-body interactions and
thermal fluctuations within the framework of a ‘toy model’, that is disc-shaped
supramolecular units composed of thermalized configurations of Lennard-Jones
atoms. In this case, W1(R) varies so slowly that it can be parametrized by
estimating the free energy change associated with the overlap of the discs. The
resulting overlap approximation to W1(R) behaves qualitatively like ad hoc
effective potentials used in mesoscale simulations, such as dissipative particle
dynamics. Indeed, on the basis of Monte Carlo simulations and a solution of
hypernetted chain integral equations,we find that fluids interacting via DPD and
overlap potentials have very similar structural and thermophysical properties.
Moreover, the ‘overlap’ fluid (like other ‘effective’ fluids) turns out to be so
‘soft’ that its properties, particularly at high densities, can be very well estimated
by a mean-field treatment.
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1. Introduction

In recent years theoretical treatments and computer simulations of macromolecular and
supramolecular systems have attracted growing interest, stimulated partly by the experimental
progress in preparing functionalized nanostructured fluids [1]. From a theoretical point of
view, the challenge in investigating such systems consists of dealing with a huge number of
microscopic degrees of freedom corresponding to the macromolecules themselves and to the
solvent (if present). In fact, fully atomistic simulations for such systems are usually incapable of
accessing length and timescales characterizing the phenomena of interest, which typically take
place on the mesoscale. An example is the self-assembly of surfactant solutions into micelles,
a process occurring on scales of length and time of about 100 nm and 1 µs, respectively [2].
For that reason, several mesoscopic simulation techniques have been established which are
based on coarse-grained models involving only those degrees of freedom that one is actually
interested in (e.g., the centres of mass (com’s)), while less relevant internal degrees of freedom
are integrated out. The remaining ‘particles’ then interact via effective potentials reflecting the
internal configurations only implicitly.

A specific example of an effective potential is one that has been employed within the
context of dissipative particle dynamics (DPD) [3–6]. It assumes the form [6] WDPD(R) =
a(1 − R/D)2 where R is the separation between the com’s of a pair of ‘beads’ representing
clusters of atoms of a macromolecule or a solvent, D is the mean diameter of a bead, and a
is a positive constant. Subsequently in this work we refer to the fluid consisting of particles
that interact pairwise according to WDPD(R) as a ‘DPD’ fluid. The specific functional form of
WDPD is an ansatz and lacks, in fact, any fundamental (microscopic) basis. It is so devised as
to possess the main features that have been identified as essential for a proper coarse-grained
description of macromolecular systems [7, 8]: WDPD(R) varies much more slowly than a
typical interatomic pair potential, say a Lennard-Jones one; its range is approximately the
diameter of the bead; it remains finite as R → 0, which indicates that the beads can overlap
completely. The motivation for this paper is a search for the microscopic basis of these features
of effective potentials. We are interested in identifying the ingredients causing ‘softness’ and
such simple functional forms as WDPD(R), rather than in constructing effective potentials for
specific systems.

Explicit expressions forW(R) have already been derived for linear polymer chains [9–13],
star polymers [14], and spherical dendrimers [15, 16]. These derivations are based on a precise
statistical mechanical definition ofW(R) involving an integration of the Boltzmann factor over
the irrelevant degrees of freedom [7, 8]. A similar procedure has been used for the derivation
of effective potentials between large colloidal particles in solution [17]. A prominent result of
such coarse-graining procedures is the Gaussian potential for linear polymers, which has the
characteristics of a soft potential described above [10]. In comparison to the case for those
previous studies, the systems considered in the present work are much less realistic, but have
the advantage that the effect of ‘ingredients’ such as size and internal structure of the molecules
on the resulting effective potential can be investigated more readily.

Section 2.1 of the paper is given over to a derivation of the general expression for the
effective potential energy of a system of mesoscopic particles, following essentially the lines
presented in [7, 8]. The general expression is then specialized in section 2.2 to the situation
where only pair interactions are significant. In sections 2.3 and 2.4 we give explicit expressions
for the effective potential for a hierarchy of bimolecular systems of increasing complexity.
The simplest system investigated consists of an atom plus a diatomic molecule, while the most
complex case involves two ‘glassy discs’ with liquid-like, yet frozen internal configurations of
atoms. Inspired by the disordered internal structure of the discs, we also present in section 2.5 a
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simple parametrization of the effective interaction in terms of the free energy change associated
with the overlap of the discs.

Numerical results are presented in section 3. On the basis of the model systems introduced
in section 2 we systematically examine the effects of size, dimensionality,nature of microscopic
interactions, and internal structure on the resulting effective potential (sections 3.1–3.3).
The characteristic ‘softness’ of mesoscopic effective potentials is recovered only for the
‘glassy discs’. Moreover, we show that the effective potential can be parametrized by the
overlap approximation derived in section 2.5. This motivates us to examine in section 3.4
thermophysical properties of a three-dimensional ‘overlap’ fluid, that is a system of spherical
particles interacting via the overlap pair potentials. The goal is to show that the ‘overlap’
fluid has ‘soft’ features similar to those of other fluids interacting via effective potentials [7]
such as the ‘Gaussian’ and ‘DPD’ fluids. To this end, we investigate properties such as the
density dependence of the pair correlation function and the pressure, employing both (quasi-
exact) Monte Carlo (MC) simulations and integral equations in the hypernetted chain (HNC)
approximation. It turns out that the MC and HNC approaches yield nearly identical results,
especially at high densities where thermophysical properties of the ‘overlap’ fluid become
mean-field-like. Our conclusions are summarized in section 4.

2. Theory of the effective potential

2.1. The effective many-body potential for a polyatomic molecular system

For the sake of concreteness we consider a polyatomic molecular system and seek an effective
potential that governs the com motion of the molecules. The original Hamiltonian can be
written as

H =
∑

a

Na∑
i=1

[
P a

i · P a
i

2Ma
+ ha

i

]
+ U (2.1)

where a labels the species and Na is the number of molecules of that species, which has
molecular mass Ma . Momentum P a

i is conjugate to the com position Ra
i of the i th molecule

of species a; the ‘internal’ Hamiltonian ha
i pertains to the 3(na − 1) internal (i.e., rotational,

vibrational) degrees of freedom, where na is the number of atoms in molecules of species a;
U stands for the intermolecular interactions.

We assume that U can be decomposed into pair interactions as

U =
∑

a

∑
b

Na∑
i=1

Nb∑
j=1

U ab
i j (2.2)

where U ab
i j signifies the interaction between molecule i of species a and molecule j of species

b, and

U ab
i j =

na∑
k=1

nb∑
l=1

ϕ(rab
ik jl) (2.3)

where ϕ is the interaction between atom k of molecule i (species a) and atom l of molecule
j (species b). The potential ϕ depends only on the interatomic distance rab

ik jl = |ra
ik − rb

jl |,
where ra

ik and rb
jl are the absolute positions of the two atoms involved. Specifically, we take

the interatomic potentials to be represented by a generalized Lennard-Jones (LJ) (12, 6) form

ϕ(r) = 4ε

[(σ

r

)12 − λ
(σ

r

)6
]

(2.4)
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where ε sets the energy scale and σ denotes the ‘diameter’ of an atom; the dimensionless
parameter 0 � λ � 1 is used to switch between the conventional LJ (12, 6) potential (λ = 1)
and a soft-spheres potential with purely repulsive intermolecular interactions (λ = 0).

For the following derivations it is important to note that, independently of the actual choice
of ϕ, the interatomic separations rab

i jkl determining the interaction energy U ab
i j are implicit

functions both of the separation between the com’s of i and j , Rab
i j = |Ra

i − Rb
j |, and of the

internal coordinates (e.g., relative positions, Euler angles, or normal-mode coordinates) qa
ik

(k = 1, . . . , na − 1) and qb
jl (l = 1, . . . , nb − 1) of the molecules i and j . Using then the

com’s and the internal coordinates (instead of the absolute atomic positions) as variables, we
can express the classical canonical partition function as

Q = 1∏
a Na !θ Na

a h3na Na

∫
dR

∫
dP

∫
dq

∫
dp exp(−β H ) (2.5)

where θa is the symmetry number of species a, h is Planck’s constant, β ≡ 1/kBT , kB

is Boltzmann’s constant, and T is the absolute temperature. Note the severely compacted
notation in (2.5):

dR =
∏

a

Na∏
i=1

dRa
i (2.6)

dq =
∏

a

Na∏
i=1

3(na−1)∏
k=1

dqa
ik . (2.7)

An analogous notation is used in (2.5) for the integrations over the internal and com momenta
pa

ik and P a
i , respectively. Integrating out the latter, we can rewrite (2.5) as

Q = 1∏
a Na !�3Na

a

∫
dR exp[−βW(R)] (2.8)

where �a ≡ (h2/2π MakBT )1/2 is the thermal de Broglie wavelength and W is the effective
potential energy, given by

W(R) ≡ −kBT ln

[
1∏

a θ
Na
a h3(na−1)Na

∫
dq

∫
dp exp

(
−β

∑
a

Na∑
i=1

ha
i

)
exp(−βU)

]
. (2.9)

The argument of the logarithm in (2.9) may be recognized as the canonical partition
function of the system with the com’s of the molecules fixed in the configuration R. Thus,
W is the effective Helmholtz potential of the system ‘frozen’ in that configuration. In the
following we make use of the fact that the effective potential defined by (2.9) depends on the
actual configuration R only through the interaction part of the Boltzmann factor exp(−βU).
Therefore, it is convenient to recast W in the (still exact) form

W(R) = −kBT ln
[
Q0 〈exp (−βU)〉0

]
(2.10)

where

Q0 ≡ 1∏
a θ

Na
a h3(na−1)Na

∫
dq

∫
dp exp

(
−β

∑
a

Na∑
i=1

ha
i

)
(2.11)

is the partition function for the ‘non-interacting’ system, that is the system with vanishing
interatomic interactions U (see (2.2) and (2.3)), and the angular brackets 〈· · ·〉0 stand for an
ensemble average over the states of this non-interacting system. Explicitly, one has

〈X〉0 =
∫

dq
∫

dp exp(−β
∑

a

∑Na
i=1 ha

i )X (q,p)∫
dq

∫
dp exp(−β

∑
a

∑Na
i=1 ha

i )
. (2.12)
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Note that if X = X (q) (i.e., if X is independent of the momenta), as is the case of interest
here, where X = exp(−βU), then the integration on p can be carried out to give

〈X〉0 =
∫

dq γ (q) exp(−β
∑

a

∑Na
i=1 va

i )X (q)∫
dq γ (q) exp(−β

∑
a

∑Na
i=1 va

i )
(2.13)

where va
i is the internal potential energy of molecule i of species a and the factor γ (q) arises

from terms in the internal kinetic energies that contain factors depending on the (generalized)
internal coordinates.

Equation (2.10) can be rewritten as

W(R) = −kBT ln Q0 − kBT ln〈exp(−βU)〉0 (2.14)

where the first term is the free energy of the non-interacting system and the second term is the
‘correction’ to the free energy due to the interactions among molecules frozen in configuration
R. Since Q0 does not depend on R, the non-interacting term in (2.14) has no influence on the
motion of the com’s, although it does contribute to the thermodynamic properties, which are
expressible as derivatives of the Helmholtz potential

F = −kBT ln Q (2.15)

with respect to the controlled state variables (i.e., T , {Na}, and volume V ). Henceforth we
focus on the correction

W1(R) ≡ −kBT ln〈exp(−βU)〉0. (2.16)

2.2. The effective pair potential

Inspecting the rhs of (2.16) we observe that the effective potential W1(R) cannot be expressed
simply as a sum of pair interactions, despite the (original) potential energy (see (2.2)) being
assumed to be so expressible. The reason is the appearance of many-body correlations in the
ensemble average 〈exp(−βU)〉0, which makes it impossible to factor the latter. Nevertheless,
to realize some progress toward a pair description of W1(R), we suppose the density to be low
and express the Boltzmann factor as a Mayer cluster expansion (see, e.g., [18])

exp(−βU) =
∏
ab

∏
1�i�Na ,1� j�Nb

(
1 + f ab

i j

)
(2.17)

� 1 +
∑

a

∑
b

Na∑
i=1

Nb∑
j �=i

f ab
i j (2.18)

where

f ab
i j = exp(−βU ab

i j ) − 1 (2.19)

is the Mayer f -function and we have neglected three-body and higher-order terms on the rhs
of (2.18). Substituting this approximation for exp(−βU) into (2.16), we obtain

W1(R) � −kBT ln


1 +

∑
a

∑
b

Na∑
i=1

Nb∑
j �=i


 Z ab

i j

(
Rab

i j

)
Z ab

i j,0

− 1




 . (2.20)

In (2.20) the pair configuration integrals are defined by

Z ab
i j (Rab

i j ) ≡
∫

dqa
i γ a

i

∫
dqb

j γ b
j exp[−β(va

i + vb
j )] exp(−βU ab

i j ) (2.21)

Z ab
i j,0 ≡

∫
dqa

i γ a
i exp(−βva

i )

∫
dqb

j γ b
j exp(−βvb

j ) (2.22)
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where dqa
i = ∏3(na−1)

k=1 dqa
ik and we have used the factorizability of the function γ (q) appearing

in (2.13), that is

γ (q) =
∏

a

Na∏
i=1

γ a
i (qa

ik). (2.23)

This is in turn due to the separability of the internal kinetic energies.
Note that, in spite of the truncation of the cluster expansion of the Boltzmann factor after

the two-body term (see (2.18)), the resulting effective potential W1(R) is still not a true pair
potential because of the appearance of the logarithm in (2.20). In fact, a true effective two-body
potential only results from (2.20) under the additional restriction that the system contains just
two polyatomic molecules. In that case, we have from (2.20)

W1 (R) = −kBT ln

[
Z ab (R)

Z ab
0

]
(2.24)

where

Z ab(R) =
∫

dqa γ a
∫

dqb γ b exp[−β(va + vb)] exp(−βU ab) (2.25)

and

Z ab
0 =

∫
dqa γ a exp(−βva)

∫
dqb γ a exp(−βvb). (2.26)

Note that the indices i and j that label particular molecules of species a and b in the general
formulae (2.20)–(2.22) have disappeared since only one molecule of each species is present.
The effective potential W1 thus reduces to a true two-body potential.

To evaluate W1 in practice we must compute the internal configuration integral Z ab(R)

(see (2.25)) numerically. For that purpose we need not only to specify the internal potential
energies va and vb, but also to express the interatomic distances rab

kl , on which U ab depends
through (2.3), as functions of the com coordinates, Ra and Rb, and internal coordinates qa

k
and qb

l . In the following the internal coordinates are chosen as vectors ρa
k (ρb

l ) describing the
position of atom k (l) with respect to the com of molecule a (b). This implies

rab
kl = |ra

k − rb
l | = |Ra + ρa

k − Rb − ρb
l | = |Rab + ρa

k − ρb
l |. (2.27)

2.3. The effective interaction between an atom and a diatomic molecule in two and three
dimensions

Consider now the simplest system suitable for the introduction of an effective potential: an
atom interacting with a diatomic molecule. In this case, where na = 1 and nb = 2, the atom
a has no internal degrees of freedom. The integral on qa therefore disappears from the formal
expressions in (2.25) and (2.26) and ρa

1 = 0 in (2.27). Moreover, we can, for convenience,
take the com of the diatomic to lie at the origin (i.e., Rb = 0, Rab = Ra = R). The internal
coordinates of the diatomic molecule’s atoms can be expressed

ρb
1 = m2r

m
(2.28)

ρb
2 = −m1r

m
(2.29)

where r = rb
1 − rb

2 , m = m1 + m2, and mi denotes the mass of atom i (i = 1, 2). Substituting
these latter relations into (2.27), we obtain

rab
11 = |R − ρb

1| =
[

R2 − 2m2

m
Rr cos θ +

(m2

m

)2
r2

]1/2

(2.30)
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rab
12 = ∣∣R − ρb

2

∣∣ =
[

R2 +
2m1

m
Rr cos θ +

(m1

m

)2
r2

]1/2

(2.31)

where θ denotes the angle between R and r.
We assume that the internal potential energy of the diatomic molecule is given by

vb(r) = vb(re) + 1
2κ(r − re)

2 (2.32)

where re is the equilibrium bond length and κ is the force constant. Since rab
kl depends only

on the magnitude of R, for convenience we take the atom on the positive z-axis and utilize
spherical polar coordinates to describe the internal motion of the diatomic molecule. From the
general expressions in (2.25) and (2.26) we obtain

Z ab(R) =
∫ 2π

0
dφ

∫ 1

−1
dx

∫ ∞

0
dr r2 exp

{
−β

[
vb (re) +

κ

2
(r − re)

2
]}

× exp{−β[ϕ(rab
11 ) + ϕ(rab

12 )]} (2.33)

Z ab
0 = 4π

∫ ∞

0
dr r2 exp

{
−β

[
vb(re) +

κ

2
(r − re)

2

]}
(2.34)

where x = cos θ , θ is the polar angle, φ is the azimuthal angle, and the arguments of the
interatomic pair potentials ϕ depend implicitly on R, r , and x through (2.30) and (2.31). Note
that since the interatomic separations rab

kl depend only on the magnitude of the com separation
vector R, the same holds for the pair configuration integral Z ab(R). From (2.33) and (2.34)
we then obtain the crucial ratio

Z ab(R)

Z ab
0

= 1

2

∫ ∞

0
dr r2 P3D(r)

∫ 1

−1
dx exp{−β[ϕ(rab

11 ) + ϕ(rab
12 )]} (2.35)

which determines W1(R) through (2.24). The bond-length distribution function P3D(r) is
defined by

P3D = exp[−βκ(r − re)
2/2]∫ ∞

0 dr r2 exp[−βκ(r − re)2/2]
. (2.36)

In the case where the diatomic molecule is rigid (i.e., r is fixed at r = re), the only internal
coordinates of the diatomic molecule are the angles θ and φ. Equations (2.33) and (2.34) then
reduce to

Z ab(R) =
∫ 2π

0
dφ

∫ 1

−1
dx exp[−βvb(re)] exp{−β[ϕ(rab

11 ) + ϕ(rab
12 )]} (2.37)

Z ab
0 = 4π exp[−βvb(re)] (2.38)

and we have therefore
Z ab(R)

Z ab
0

= 1

2

∫ 1

−1
dx exp{−β[ϕ(rab

11 ) + ϕ(rab
12 )]}. (2.39)

Note that this latter expression may also be reached directly from (2.35) through the identity

lim
κ→∞ P3D(r) = δ(r − re)

r2
e

(2.40)

where δ stands for Dirac’s delta function and the limit corresponds to the infinitely stiff (i.e.,
rigid) bond.

The explicit formulae (2.33)–(2.39) refer to three-dimensional (3D) systems. If, on the
other hand, the system is confined to a plane, then (2.35) is replaced by

Z ab(R)

Z ab
0

= 1

2π

∫ ∞

0
dr r P2D(r)

∫ 2π

0
dθ exp{−β[ϕ(rab

11 ) + ϕ(rab
12 )]} (2.41)
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where θ is now the angle between r and the positive x-axis, along which lies R, and rab
11 and

rab
12 are still given by (2.30) and (2.31). Also, the 2D analogue of the bond-length distribution

is given by

P2D = exp[−βκ(r − re)
2/2]∫ ∞

0 dr r exp[−βκ(r − re)2/2]
. (2.42)

Finally, in the limit of a rigid diatomic molecule (i.e., for κ → ∞), (2.41) simplifies to

Z ab(R)

Z ab
0

= 1

2π

∫ 2π

0
dθ exp{−β[ϕ(rab

11 ) + ϕ(rab
12 )]}. (2.43)

The effective potentials W1(R) = −kBT ln[Z ab(R)/Z ab
0 ] corresponding to the various

‘atom plus diatomic molecule’ systems introduced above can be easily evaluated by numerical
integration of the integrals on the rhs of (2.35), (2.39), (2.41), and (2.43). Any standard
integration technique can be used for this calculation [19] (we employed an extended
trapezoidal rule based on cubic spline interpolation). Numerical results are presented in
section 3.1.

2.4. The effective interaction between two rigid, planar polyatomic molecules

In addition to the simple, well-defined model systems discussed in section 2.3, where
the effective potential can be evaluated nearly analytically, we will also consider below
(see section 3.3) effective interactions between two larger, planar molecules a and b with
highly disordered, yet frozen internal configurations specified by the atomic positions ra

k
(k = 1, . . . , na) and rb

l (l = 1, . . . , nb). Starting from these configurations, the effective
interactionW1(R) is calculated from the general formulae (2.24), (2.25), and (2.26) as follows.

We first determine the com positions Ra and Rb and take the direction of the vector
R = Ra − Rb to coincide with the x-axis of our two-dimensional coordinate system. Next,
we calculate the relative atomic positions ρa

k = ra
k − Ra and ρb

l = rb
l − Rb, the magnitudes

of these vectors, that is ρa
k = |ρa

k | and ρb
l = |ρb

l |, and, on the basis of these quantities, the
angles θa

k = cos−1(ρa
k,x/ρ

a
k ) and θb

l = cos−1(ρb
l,x/ρ

b
l ) between ρa

k (ρb
l ) and the x-axis (ρa

k,x

and ρb
l,x are the x-components of the relative position vectors). The interatomic separation

then follows from (2.27) as

rab
kl = [R2 + (ρa

k )2 + (ρb
l )2 + 2Rρa

k cos θa
k − 2Rρb

l cos θb
l − 2ρa

k ρb
l cos(θa

k − θb
l )]−

1
2 . (2.44)

Note that quantities ρa
k (ρb

l ) and θa
k (θb

l ) are all fixed for any given internal structure of the two
rigid polyatomic molecules. Therefore, at fixed com separation R, the only transformations
determining the effective interaction between the polyatomic molecules are rotations relative
to each other, and these can be described by the angles of just two (arbitrary) ‘reference’
atoms within each polyatomic molecule, say θa

1 and θb
1 . We thus formally replace the angles

appearing in (2.44) by θa
k = θa

1 + �θa
k and θb

l = θb
1 + �θb

l where θa
1 and θb

1 are the variables,
and �θa

k (�θb
l ) are fixed for any given internal structure. The crucial ratio determining the

effective potential W1(R) (see (2.24)) can then be written as

Z ab(R)

Z ab
0

= 1

(2π)2

∫ 2π

0
dθa

1

∫ 2π

0
dθb

1 exp

{
−β

n∑
k=1

n∑
l=1

ϕ(rab
kl )

}
. (2.45)

Here we have set the internal potential energies appearing in (2.25) and (2.26) to zero, since
we are considering rigid polyatomic molecules.
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2.5. The overlap approximation to the effective potential

In order to parametrize the effective potentials between larger, highly disordered
supramolecules considered in section 3.3, it will prove useful to introduce a simple
approximation. This is based upon the interpretation of W(R) as the Helmholtz free energy of
the system with the com’s of the supramolecules fixed in the configuration R(see the discussion
below (2.9)). According to (2.10) we can express W1(R) as the difference between this free
energy and the free energy when the com’s are fixed such that all molecules are sufficiently
far apart that their interactions are negligible.

For simplicity we restrict our consideration to a system comprising a single pair of identical
supramolecules and estimate this free energy difference very roughly. We assume that the
particles are spheres of radius r0 and volume V = 4πr3

0 /3. We further assume that the particles
do not interact unless they overlap (i.e., unless R < 2r0). If R < 2r0, we approximate the free
energy of the interacting system as

F(R) � Vo(R) fo + 2[V − Vo(R)] f (2.46)

where Vo and 2[V −Vo(R)] are the respective volumes of the overlapping and non-overlapping
regions of the particles and fo and f are the Helmholtz potential densities associated with these
regions. If R > 2r0, then

F = 2V f. (2.47)

Implicit in (2.46) and (2.47) is the assumption that f and fo are constant throughout their
respective regions and independent of R. Combining (2.46) and (2.47), we obtain for the free
energy difference, with which we identify W1(R),

W1(R) = F(R) − F
= � f Vo(R) (2.48)

where � f = fo − 2 f .
We note in passing that the idea of the overlap volume Vo(R) determining the effective

potential between two molecules has also been used in other contexts, such as in the construction
of the Gay–Berne potential for liquid crystal molecules [20].

The volume of the overlapping region is twice the volume of the spherical cap [21]

Vc = πh2

3
(3r0 − h) (2.49)

of height h, where the height of the cap is related to R and r0 by

h = r0 − R

2
. (2.50)

Substituting (2.50) into (2.49) and simplifying, we get

Vo(R) = 4πr3
0

3

[
1 − 3

2
α(R) +

1

2
α3(R)

]
(2.51)

where

α(R) = R

2r0
. (2.52)

For a 2D system the spheres are replaced by discs of radius r0. A straightforward calculation
paralleling the 3D one yields for the area of the overlapping region [21]

Ao = 2r2
0

{
arccos [α(R)] − α(R)

√
1 − α2(R)

}
(2.53)
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where again α(R) is defined in (2.52). Combining now (2.48), (2.51), (2.52), and (2.53) we
get the ‘overlap’ potential

W1(R) =




a2D

[
arccos α − α

√
1 − α2

]
2D

a3D
[
1 − 3

2α + 1
2 α3

]
3D

}
0 � α � 1

0 α > 1

(2.54)

where a2D and a3D are undetermined constants setting the energy scales in the 2D and 3D
systems, respectively. In section 3.3 we employ the 2D overlap potential (2.54) as the fit
function, taking a2D as the parameter. Implications of the shape of the overlap potentials for
various thermophysical properties are discussed in section 3.4.

3. Numerical results

3.1. An atom plus a diatomic molecule

The influence of bond lengths. We begin with the simplest case, namely that of an atom
interacting with a rigid, homonuclear diatomic molecule (m1 = m2) in two dimensions. Setting
the dimensionless temperature kBT/ε = 1 (where ε is the LJ energy unit; see (2.4) with λ = 1)
we calculate the effective potential W1(R) from (2.24) and (2.43) as a function of the (fixed)
bond length re (in units of the LJ (or SS) diameter σ ).

It is convenient to consider first the limit re = 0, where the diatomic molecule degenerates
into a single LJ atom. As a consequence one has

W1(R) = 2βϕ(R) (3.1)

which follows from (2.43) and (2.24) by noting that for the degenerate case rab
11 = rab

12 = R
and therefore

Z ab(R)

Z ab
0

= exp[−2βϕ(R)]. (3.2)

The plot labelled 2ϕLJ(R)/ε in figure 1(a) confirms this result. Plots in figure 1(a) also indicate
that with increasing bond length re the minimum shifts to larger R and becomes shallower,
while a second minimum at shorter com separation gradually appears (see plot for re/σ = 1.8
in figure 1(a)). The secondary (but only weakly pronounced) minimum corresponds to the
atom located on the bond axis halfway between the two atoms of the diatomic molecule.

Another noteworthy feature of the dependence of W1(R) on re is illustrated in figure 1(b)
where we focus on intermediate (non-zero) values of the bond length (1.5 < re < 1.9). For this
range of re the effective potential W1(R), unlike the interatomic pair potential ϕ(R), remains
finite as R → 0. Moreover, the strength of the repulsion decreases gradually with increasing
re. This behaviour is intuitively reasonable, since the atom is never forced to coincide with
either atom of the diatomic molecule when re > 0; it is especially significant because it agrees
with the behaviour of more realistic effective potentials [7]. A prominent example is the
Gaussian, which has previously been shown to describe well the effective potential for such
macromolecular systems as polymer coils [7, 9, 22] and dendrimers [15, 16]. Surveying the
plots in figure 1(b), one might be tempted to assume that W1(R) could also be represented
reasonably well by a Gaussian. We have tested this notion by computing the second and fourth
central moments µ2 and µ4 of W1(R), which for a Gaussian should satisfy the relation

3µ2
2

µ4
= 1. (3.3)
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Figure 1. The effective potential for an atom interacting with a rigid homonuclear diatomic
molecule in 2D via LJ interatomic potentials (see (2.4), with λ = 1) for various bond lengths re .
Curves are labelled with values of re/σ .

Typical values of this ratio are always much smaller than 1 for the five curves plotted in
figure 1(b), thereby reflecting the strongly non-Gaussian character of our W1(R) obtained for
the simple system to hand. We note in passing that increasing re to values of twice the LJ
diameter or more causes W1(R) to look rather unphysical in that it exhibits potential barriers
at small but non-zero com separations and may be attractive rather than repulsive in the limit
R = 0. These features suggest that the range of bond length over which evaluation of the
effective potential is physically sensible for this model is quite limited.

The relevance of attractive tails. By setting λ = 0 in (2.4) we ‘switch off’ intermolecular
attractions. Plots of W1(R) for the 2D system of an atom plus a homonuclear diatomic
molecule in figure 2(a) show that the effective potential is again ‘soft’ and finite even at R = 0
for the bond lengths considered and that the repulsion weakens with increasing re. Thus, the
dependence of the effective potential on re is similar to that of the corresponding LJ system.
Direct comparison of the resulting W1(R)’s for two model systems (that is λ = 0 (SS) versus
λ = 1 (LJ)) is made in figure 2(b). The plots indicate that the SS intermolecular potential gives
rise to a somewhat more strongly repulsive W1(R) at short com separations because of the
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Figure 2. (a) The same as figure 1, but for soft-sphere (SS) interatomic potentials (see (2.4), with
λ = 0) and bond lengths 1.6 � re/σ � 3.0. (b) Comparison of the effective potentials based on
SS and LJ interactions for re/σ = 1.6 and 1.8.

lack of intermolecular attraction. A further consequence of the absence of attraction, which
is illustrated in the inset in figure 2(b), is that W1(R) goes to zero monotonically whereas it
has a minimum in the LJ case. Apart from these subtle differences, however, the W1(R)’s
are actually quite similar in that they remain finite in the limit R = 0, unlike the underlying
interatomic potential ϕ.

The influence of the spatial dimension. So far we have been considering the effective potential
between an atom and a diatomic molecule in two dimensions. However, on the basis of (2.24)
and (2.39) we may also consider 3D systems. Results obtained for an underlying LJ interatomic
potential are plotted in figure 3. It is seen that dimensionality (i.e., 2D versus 3D) has only a
negligible impact on W1(R) as far as the repulsive part of the effective potential is concerned.
On the other hand, subtle differences occurring around the minimum of W1(R) can be seen
in the inset in figure 3. Specifically, the range over which the effective potential is negative is
somewhat wider for the 3D than for the 2D system. We speculate that this difference is due to
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Figure 3. Comparison of effective potentials for a LJ atom–diatomic molecule system in 2D and
3D for two bond lengths re/σ = 1.5 and 1.7.
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Figure 4. The influence of harmonic vibrations on the effective potential of a 2D LJ atom–diatomic
molecule system (equilibrium bond length re/σ = 1.5) for various dimensionless force constants
102 � βκσ 2 � 109. The result for the corresponding rigid diatomic molecule is included as a
reference.

what one might refer to as an entropic effect: more attractive configurations are available in
the 3D system than in the 2D system.

The influence of vibrations. Finally, it is instructive to consider the influence of intermolecular
vibrations on W1(R). We limit the treatment to a classical harmonic oscillator (see (2.32)),
for which W1(R) is generated in 3D from (2.35) and (2.36) or in 2D from (2.41) and (2.42).
Results are plotted in figure 4, where we set the equilibrium bond length to re/σ = 1.5. From
figure 4 one readily concludes that bond vibrations have a profound impact onW1(R). Starting
from a large (dimensionless) force constant βκσ 2 = 109, where W1(R) is indistinguishable
from the corresponding curve for the rigid diatomic molecule, the repulsive part of W1(R)

substantially decreases with decreasing force constant. Specifically, as βκσ 2 decreases from
109 to 102, W1(0) decreases by roughly a factor of 17.
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In sharp contrast the inset in figure 4 indicates that variations in κ have little or no influence
on the attractive region of W1(R). The disparate impacts of bond stiffness on the repulsive
and attractive regions can be rationalized as follows. On the one hand, the repulsive part of
the effective potential arises from configurations in which the atom is near the com of the
diatomic molecule. Hence, the less rigid the bond is, the more easily the atom can move
between the diatomic molecule’s atoms and consequently the smaller the repulsion is. On the
other hand, the attraction comes from configurations in which R is greater than re and is due to
the attractive tails of the interatomic LJ pair potentials. Small oscillations of the bond length
about its equilibrium length re are expected to cause only slight variations in the attraction.

3.2. Conclusions from studying small model systems

A major conclusion from the results presented in section 3.1 is that the simplest model systems
involving only small molecules already can yield ‘soft’ effective potentialsW1(R) in the sense
that they remain finite in the limit R → 0. However, a common feature of the systems
investigated so far is that W1(R) vanishes on a length scale that is determined more or less by
the range of the underlying interatomic potential, that is the LJ (or SS) diameter σ . This is in
contrast to effective potentials for true supramolecular systems where the characteristic length
scale is typically determined by the supramolecular unit itself (e.g., the radius of gyration
of a polymer) rather than that of its atomic constituents [7]. It seems that two significant
‘ingredients’ of realistic supramolecular systems are missing from the simple atom-plus-
diatomic-molecule models discussed in section 3.1. These are

(a) the presence of many atoms in the supramolecules;
(b) thermal fluctuations of the atomic positions.

Simultaneous incorporation of these ingredients along the lines followed so far, where we
have explicitly carried out the integrations over internal degrees of freedom, can be done with
reasonable numerical effort only for highly specialized ‘molecules’, such as linear chains, and
only by using idealized models (e.g., harmonic oscillators) to describe the thermal fluctuations.
In the present work, however, we are interested in general features of effective potentials rather
than in particular potentials for specific polyatomic molecule systems. This is our motivation
for adopting in the following section a ‘toy model’, which by construction lacks specific
information about the structure of the polyatomic molecules. We restrict the discussion to 2D
systems. It should be noted, however, that the following calculations could be extended to 3D
systems in a straightforward fashion.

3.3. The effective potential of ‘glassy’ discs

The ‘toy model’ consists of two discs of radius rs = 6σ , where σ is again the LJ (or SS) length
scale. The latter comes into play on assuming that each disc is composed of several atoms
interacting with each other according to ϕ(r) (see (2.4)). To obtain the spatial arrangement of
the atoms we perform an MC simulation in the canonical ensemble using a square simulation
cell of side length 2rs. From this simulation we take two thermalized configurations (at
temperature kBT/ε = 1) and remove all atoms outside a circle of radius rs such that for the two
configurations the number densities ρ = N/πr2

s are the same. The resulting configurations of
atoms then form a pair of ‘glassy’ discs with liquid-like, yet frozen internal atomic structure.
We calculate the effective potential W1(R) between the discs according to (2.45). Since
the results of the integration in (2.45) depend on the specific spatial arrangement of atoms
forming the glassy discs, we average the results forW1(R) over 12–16 statistically independent
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Figure 5. (a) The averaged effective potential (based on LJ interatomic potentials) between two
glassy discs with diameters 2r0 = 12σ and reduced internal density ρσ 2 � 0.13 (solid line). Also
shown are plots of the 2D overlap potential, where the parameter a2D has been fixed according to
the values of W1(R) at R/σ = 3. (b) The same as (a) but for ρσ 3 � 0.21. (c) The same as (a) but
for SS interatomic interactions.

configurations of atoms. In that way we eliminate special features resulting from a particular
configuration while simultaneously accounting roughly for ‘thermal fluctuations’ in atomic
positions.

Results were obtained for two internal densities ρσ 2 � 0.13, 0.21 at a fixed temperature
of kBT/ε = 1. Plots of W1(R) in figure 5 indicate that in general W1(R) is strongly repulsive
for short com separations (R → 0). This short-range repulsion is stronger for glassy discs at
the higher mean (internal) density, as one can verify by comparing plots in figures 5(a) and (b).
Again the length scale of the short-range repulsion is determined by the length scale σ of the
underlying interatomic (LJ) potential ϕ(r). Therefore it is not surprising that the higher the
density of the glassy discs, the larger the short-range repulsion between them.

However, unlike in the cases considered in section 3.1 a long-range repulsive part of
W1(R) follows the short-range repulsive branch as R increases beyond the LJ (SS) diameter.
More precisely, the range over which W1(R) decays to zero is now given by the diameter of
the discs themselves (that is, 2rs = 12σ ) rather than by the diameter of the constituent atoms.
The results also indicate that the averaged effective potential, apart from the steep repulsion
in the range R � σ , is rather smooth and follows a simple functional form. In fact, this
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Figure 6. Comparison of the DPD potential (see (3.4)) with the 2D and 3D overlap effective
potentials (see (2.54)) for βa3D = βa2D = βaDPD = 10 and D = 2r0.

second part of the potential is well represented by the simple 2D overlap potential developed
in section 2.5. This can be seen from the fits (based on (2.54), with r0 = rs) also included in
figures 5(a) and (b). The fits have been defined by fixing the constant a2D in (2.54) according
to the values of W1(R) at separation R/2r0 = 3. It should be noted, however, that this latter
choice is essentially arbitrary and other choices would also give satisfactory agreement.

Similar results are obtained for the SS interatomic potential (see (2.4); λ = 0) as one
can see from figure 5(c), where we plot W1(R) for this latter potential. The main difference
between W1(R) for the LJ and SS interatomic potentials concerns the statistical ‘noise’, which
is smaller for the SS effective potential as one can see by comparing plots in figures 5(a) and (c).
However, the overlap approximation works again quite nicely for the SS effective potential.

3.4. Properties of 3D ‘overlap’ fluids

The slow spatial variation of the overlap approximation to the effective potential, in particular
the lack of any steep repulsive part, suggests that the overlap potential might also be a
suitable candidate for mesoscale computer simulations such as the DPD method [3–6]. The
performance of these mesoscale simulation techniques relies heavily on the ‘softness’ of the
underlying potential [23]. For example, many DPD simulations employ an (effective) potential
of the form [6, 23]

WDPD
1 =

{
aDPD(1 − R/D)2 R � D

0 R > D
(3.4)

where D is the diameter of the DPD ‘particle’. In figure 6 we compare WDPD
1 to the

overlap potentials in two and three dimensions (see (2.54)), setting the repulsion parameters
a3D = a2D = aDPD and the effective diameters D = 2r0. The three potentials have a similar
shape. The 3D overlap potential agrees better with the DPD potential than its 2D counterpart
employed as a fit function in section 3.3. In the following we thus concentrate on the 3D
version, focusing on the question of whether a fluid interacting via the 3D overlap potential
has ‘soft’ properties similar to those of the DPD (and other ‘effective’) fluids.

In this context the pair correlation function g(R) is of central interest because it enables
one to link the structure of the fluid to thermodynamic quantities such as internal energy or
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Figure 7. Hypernetted chain (HNC) and Monte Carlo (MC) simulation results for the pair
correlation function g(R) for the 3D ‘overlap’ fluid at reduced densities ρD3 = 1.0 and 4.0
(reduced repulsion βa3D = 10).

pressure. We evaluate g(R) both by means of canonical ensemble MC simulations [24] and
by means of integral equation theory in the hypernetted chain (HNC) approximation [18]. The
latter is given by

g(R) = exp[−βW1(R) + h(R) − c(R)] (3.5)

where h = g − 1 and c are the total and direct correlation functions, respectively. These
density-dependent functions are linked by the (exact) Ornstein–Zernike (OZ) equation

h̃(k) = c̃(k) + ρh̃(k)c̃(k) (3.6)

where the tilde denotes the Fourier transform. The coupled equations (3.5) and (3.6) can be
solved numerically using an iteration procedure (see, e.g., [25]).

Figure 7 compares g(R) obtained by MC simulations and by solution of the integral
equations (3.5) and (3.6) for fixed repulsion parameter βa3D = 10 and two densities. The two
methods yield g(R)’s that are essentially in quantitative agreement. At both densities the fluid
is only weakly structured, as reflected by the absence of higher-order oscillations in g(R) and
the rather low first-nearest-neighbour peak around R/D ≈ 1.0. In addition, as R → 0, g(R)

decreases smoothly to a value determined by the repulsion parameter βa3D. Another interesting
feature is that g(R) loses rather than gains structure with increasing density. These observations
reflect the distinct difference between the overlap potential, on which the g(R)’s in figure 7
are based, and an interatomic (e.g., hard-sphere or LJ) potential, for which the structure of
g(R) becomes more pronounced with increasing density. The absence of a pronounced shell
structure of g(R) for the overlap potential reflects that the number of neighbours around a
central particle in the ‘overlap’ fluid can essentially grow without limit, in contrast to the LJ
(or hard-sphere) fluid case, where the coordination number is limited to 12 on average.

The very good agreement between MC and HNC results, which has been reported
previously for other ultrasoft potentials [9, 10], is perhaps not surprising. It was established
quite some time ago that the HNC closure gives good results for long-range intermolecular
potentials [18, 26] such as the Coulomb and dipole–dipole potentials that are in a sense also
‘soft’ because of their slow decay with increasing R. The HNC closure does not work well,
on the other hand, if the interaction potential is dominated by a short-range repulsion, as for
the hard- or soft-sphere potentials [18, 26].
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Figure 8. The HNC pair correlation function g(R) for 3D ‘overlap’ and ‘DPD’ fluids at two
different reduced densities ρD3 = 1.0 and 4.0 (reduced repulsion βa3D = βaDPD = 10).

The excellent performance of the HNC theory prompted us to employ this approximation
to compare properties of the 3D ‘overlap’ fluid (W1(R) given by (2.54)) with those of the
‘DPD’ fluid (W1(R) given by (3.4)). For the two densities ρD3 = 1.0, 4.0 considered, the
resulting g(R)’s plotted in figure 8 reveal only slight deviations, the main difference being that
the first peak of g(R) for the overlap potential is higher and somewhat more pronounced. This
suggests that the 3D overlap potential is slightly less soft than the DPD potential, as indicated
already by the potential curves in figure 6.

With the aid of g(R) we can also compute the pressure. Within the HNC
approximation (3.5) this can be accomplished in several ways, which permits us to check
the internal consistency of our data. We begin by splitting the pressure P into an ideal-gas
contribution P id and an excess contribution Pex due to W1(R), that is

P = P id + Pex (3.7)

where

Pex = −2πρ2

3

∫ ∞

0
dR R3 dW1(R)

dR
g(R) (3.8)

follows from the conventional virial route [18]. Another expression for Pex, which is exact
within the HNC theory, is derived in the appendix.

Utilizing these two independent expressions we evaluated Pex for a number of densities
ρD3 (and fixed repulsion βa3D = 10). Results are given in table 1, where we have also
included corresponding MC data (based on the virial route [24]). As one can verify, the two
routes give nearly identical results for the (reduced) excess pressure. This internal consistency
is particularly noteworthy in view of the approximate character of the HNC theory. In fact,
HNC results for ‘ordinary’ (e.g., LJ) fluids are typically internally inconsistent [18]. Therefore
we conclude that the internal consistency of the data in table 1 is a consequence of the soft
character of the overlap potential. A further consequence, which is apparent from the data in
table 1, is that the HNC results agree very well with those of the MC simulations.

Finally, it is instructive to examine the ratio Pex/Pex
MF, where the mean-field excess pressure

Pex
MF follows from (3.8) on setting

g(R) = 1 (3.9)
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Figure 9. Excess pressure Pex relative to the corresponding mean-field value Pex
MF as a function of

the reduced density for 3D ‘overlap’ and ‘DPD’ fluids.

Table 1. The reduced excess pressure Pex∗ = β Pex D3 for a fluid interacting via the (3D) overlap
potential (see (2.54)) for various reduced densities ρ∗ = ρD3 (reduced repulsion βa3D = 10).

ρ∗ Pex∗ (see (3.8)) Pex∗ (see (A.10)) Pex∗ (MC)

0.5 1.314 1.315 1.308
1.0 1.671 1.674 1.639
2.0 2.140 2.142 —
4.0 2.426 2.428 2.432
6.0 2.507 2.509 2.511
8.0 2.543 2.545 2.546

which expresses the absence of spatial correlations in the mean-field approximation.
Substituting (3.9) and the 3D overlap potential (2.54) into (3.8) and performing the integrations,
one obtains

Pex
MF = π

12
a3Dρ2 D3 (3.10)

where D = 2r0 is the molecular diameter. Plots of the ratio Pex/Pex
MF in figure 9 indicate that

the mean-field nature of the ‘overlap’ fluid increases with increasing ρ (i.e., the ratio tends to
unity as ρ gets large). The increasing mean-field character of the fluid is already evident from
plots of g(R) in figure 7, where one sees that the fluid loses internal structure as ρ increases.
Hence, an (admittedly somewhat crude but useful) approximation such as (3.9) can be expected
to improve with increasing ρ. This is in accord with one’s intuition [27]. As ρ increases, the
number of neighbours with which a central particle in the ‘overlap’ fluid interacts can rise
to very large values—a classic situation where mean-field theory, which becomes exact for
infinite-range potentials [28], should work quite well.

4. Summary and conclusions

In this paper we are concerned with the origin of ‘softness’ of effective potentials acting
between supramolecules composed of individual atoms and molecules. The effective potential
is directly associated with the free energy of an assembly of several such supramolecules. As
a consequence, effective potentials depend per se on the thermodynamic state of the system
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under investigation. In this sense, effective potentials are not unique, unlike the underlying
intermolecular interaction potentials that govern the motion of the atomic constituents of the
supramolecules. On the other hand, since the internal degrees of freedom have been ‘integrated
out’, effective potentials typically depend on only a few parameters. This feature is particularly
useful in studies of phenomena that occur on scales of length and time large compared to
molecular ones. An example is the self-assembly of amphiphilic molecules which takes
place on a timescale much larger than that characteristic of motions of internal degrees of
freedom of an individual amphiphile [2]. The much larger scales of length and time become
accessible [23] because the effective potential is ‘soft’, that is the effective potential is finite
when the supramolecules overlap and vanishes slowly over the range determined by the size
of the supramolecule itself rather than that of the constituent atoms.

The simplest non-trivial system that could conceivably provide insight into the origin
of ‘softness’ consists of an atom interacting with a diatomic molecule. The charm of this
system is that the effective potential can nearly be calculated in closed form. Our results
indicate that even for this simple system the effective potential is ‘soft’ in the sense that it
remains finite as the com distance between the atom and diatomic molecule vanishes (given
appropriate values for the bond length of the diatomic molecule). However, the range of the
effective potential for the atom–diatomic molecule system is determined by the range of the
underlying interatomic potentials, that is by the size of the constituent atoms. Attractive tails
of the interatomic potentials and vibrations of the diatomic molecule have little impact on the
effective potential. However, it is noteworthy that the effective potential becomes ‘softer’ if
vibrations are incorporated.

The range of the effective potential substantially exceeds that of the underlying interatomic
potentials only if many-body effects and disorder in the internal configurations (i.e., thermal
fluctuations) are incorporated. We demonstrate this in two dimensions for a pair of ‘glassy
discs’ consisting of atoms in nearly random configurations. We also show that the origin of
‘softness’ can be explained roughly in terms of the free energy change occurring as the discs
overlap (or as spheres overlap in three dimensions). The overlap approximation contains an
undetermined parameter setting the energy scale for the effective potential. This parameter
can be determined by fitting the overlap potential to numerical data.

The usefulness of the overlap approximation lies in its simplicity, which is particularly
important if one wishes to perform computer simulation studies. The suitability of the overlap
approximation is demonstrated in this work for structural (g(R)) and ‘mechanical’ (Pex)
properties by comparing results obtained for it with those for a typical potential frequently
employed in DPD simulations (see (3.4)). A particularly interesting finding is that the higher
the density of the ‘overlap’ fluid, the less structured the system appears to be. The character of
the ‘overlap’ fluid becomes more and more mean-field-like as the density increases. We thus
conclude that the overlap potential falls into the class of ‘ultrasoft’ potentials, along with the
DPD, Gaussian, and other effective potentials [8].
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Appendix

Here we derive an alternative expression (to that given in (3.8)) for Pex within the framework
of the HNC approximation. Our approach is first to derive explicit expressions for the excess
Helmholtz free energy Fex and excess chemical potential µex and then to substitute these into
the Gibbs–Duhem relation

−PexV = Fex − µex N (A.1)

where V is the volume of the system and N is the number of molecules. For this purpose we
utilize the following relation [29], exact for pair potentials:

βFex = ρ2

2

∫ 1

0
dα

∫
dR1

∫
dR2 βgα(R)

∂Wα
1 (R)

∂α
. (A.2)

Here α is the ‘charging’ parameter, which switches the system from non-interacting (α = 0)
to fully interacting (α = 1), and gα and Wα

1 are the pair correlation function and pair potential
corresponding to a given value of the charging parameter. Using the HNC closure relation (3.5),
we can express the integrand in (A.2) as

βgα(R)
∂Wα

1 (R)

∂α
= hα(R)

∂hα(R)

∂α
− ∂cα(R)

∂α
− hα(R)

∂cα(R)

∂α
. (A.3)

Inserting (A.3) into (A.2), we can immediately perform the α integrations on the first and
second terms. To handle the third term, we invoke Parseval’s relation to convert the integral
in real space to one in reciprocal space. Explicitly, this integral (I ) becomes

I = ρ2

2

∫
dR1

∫
dR2 hα(R)

∂cα(R)

∂α
= V

(2π)3

ρ2

2

∫
dk h̃α(k)

∂ c̃α (k)

∂α

= − V

2 (2π)3

∫
dk(1 + ρh̃α(k) − 1)

∂

∂α
(1 − ρc̃α(k))

= − V

2 (2π)3

∫
dk

[
(1 − ρc̃α (k))

−1 ∂

∂α
(1 − ρc̃α (k)) + ρ

∂

∂α
c̃α(k)

]

= − V

2 (2π)3

∫
dk

[
∂

∂α
ln (1 − ρc̃α (k)) + ρ

∂

∂α
c̃α(k)

]
. (A.4)

The third line of (A.4) follows from the OZ equation (3.6). Equation (A.4) allows us to carry
out the α integration on the third term in (A.3). Combining the results gives [30, 31]

βFex

V
= πρ2

∫ ∞

0
dR R2[h(R)]2 +

1

4π2

∫ ∞

0
dk k2[ln(1 − ρc̃(k)) + ρc̃(k)] − ρ2

2
c̃(0) (A.5)

where the relation c̃(0) = ∫
dR c(R) is used to get the last term.

Now employing the relation µex = V −1(∂Fex/∂ρ)V,T , we obtain from (A.5)

βµex = 2πρ

∫ ∞

0
dR R2[h(R)]2 − ρc̃(0) + ρ2π

∫ ∞

0
dR R2

[
2h(R)

∂h(R)

∂ρ
− 2

∂c(R)

∂ρ

]

+
1

4π2

∫ ∞

0
dk k2

[
(1 − ρc̃(k))

−1 ∂

∂ρ
(−ρc̃(k)) +

∂

∂ρ
(ρc̃(k))

]
. (A.6)

In order to deal with the fourth term of (A.6), we first use the OZ equation (3.6) to replace the
factor (1−ρc̃(k))−1 by 1+ρh̃(k) and then use Parseval’s relation to convert the reciprocal-space
integral back to one in the real space. Equation (A.6) can then be recast as

βµex = 2πρ

∫ ∞

0
dR R2 [[h(R)]2 − h(R)c(R)

] − ρc̃ (0)

+ 2πρ2
∫ ∞

0
dR R2

[
h(R)

∂h(R)

∂ρ
− ∂c(R)

∂ρ
− h(R)

∂c(R)

∂ρ

]
. (A.7)
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To handle the terms in (A.7) involving derivatives with respect to ρ, we make use again of the
HNC closure (3.5), from which we obtain

∂g(R)

∂ρ
= ∂h(R)

∂ρ
− ∂c(R)

∂ρ
+ h(R)

∂h(R)

∂ρ
− h(R)

∂c(R)

∂ρ
. (A.8)

From (A.8) it follows immediately that the integrand in the last term on the rhs of (A.7)
vanishes. Consequently (A.7) reduces to

βµex = 2πρ

∫ ∞

0
dR R2 [[h(R)]2 − h(R)c(R)

] − ρc̃ (0) . (A.9)

Finally, combining (A.1), (A.5), and (A.9) we obtain the following explicit expression for Pex,
which is exact within the HNC approximation:

β Pex = πρ2
∫ ∞

0
dR R2

[
[h(R)]2 − 2h(R)c(R)

]
− 1

4π2

∫ ∞

0
dk k2

[
ln (1 − ρc̃ (k)) + ρc̃ (k)

] − ρ2

2
c̃ (0) . (A.10)
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